logo nano spa 1
  • Cabecera 1
    nanoscience and nanotechnology: small is different
  • Home
  • Division of Permanent Magnets and Applications

Division of Permanent Magnets and Applications

  • The team

    The Group of Permanent Magnets and Applications is integrated in the Program Nanoscience for Critical Raw Materials of IMDEA Nanoscience and is constituted at present by:

    Prof. Alberto Bollero - Group Leader and Program Manager.
    Dr. Ester M. Palmero - Postdoctoral researcher.
    Dr. Cristina Navío - Postdoctoral researcher.
    Dr. Clémentine Bidaud - Postdoctoral researcher.
    Javier Rial - PhD student.
    Melek Villanueva - PhD student.
    Daniel Casaleiz - PhD student.
    Carla Muñoz - PhD student.
    Jimena Soler - PhD student.
    Javier de Vicente - Technician (robotics and automatism solutions).

    The Program Nanoscience for Critical Raw Materials (coordinated by Prof. Alberto Bollero) is working closely with the Program Nanomagnetism (coordinated by Prof. Julio Camarero) at IMDEA Nanoscience.

    Group of Permanent Magnets and Applications at IMDEA Nanoscience.

    grabThe Group of Permanent Magnets and Applications is working on fundamental and applied aspects of permanent magnets with no or reduced content of critical raw elements (rare-earths). The scope is the complete or partial substitution of strategically and costly rare earths (Nd and Dy) in technological permanent magnets in close collaboration with EU industrial partners. The main research lines are:

    ◦ Systems under study: MnAl-based, MnBi, L10-FeNi, ferrites, hybrid ferrite/NdFeB systems.
    ◦ Preparation and characterization of model magnetic nanostructures: thin films and multilayers.
    ◦ Synthesis and study of isotropic nanocrystalline magnetic powders.
    ◦ Advanced 3D-printing technologies of permanent magnets and metallic materials.
    ◦ Nanoparticle engineering to synthesize nanoparticles with complex structures and tuned properties.
    ◦ Recycling methods applied to permanent magnet waste and residues in industrial plants.
    ◦ Consulting solutions and measurements-testing services to technological centres and international companies.

    The quality of the research carried out by the team is proven by 14 initiatives (national and international ones) coordinated or with a P.I. role by the team during the last 5 years (2015-2020). Detailed information about the projects can be found in the Section Projects of this website.

    Scientific and technological initiatives coordinated by the Group:
    (i) EU M-era.Net Project NEXMAG (Ref. PCIN-2015-126). This project has been designated Success Case by the M.ERA-NET network.
    (ii) Bilateral project “ENMA” (Ref. MAT2014-56955-R) between the Northeastern University Boston (Prof. Laura H. Lewis’ Group) and IMDEA Nanociencia, which also involves the company IMA S.L. (Barcelona).
    (iii) “3D-MAGNETOH” (Ref. MAT2017-89960-R) involving participation of IMA (Barcelona) and the Institute of Physics - Slovak Academy of Sciences (Slovakia).
    (iv) Supporting action “EUIN2017-88502”.

    Industrial collaborations:

    (a) Industrial projects "ECNanoManga" and "GAMMA" with the Swedish company Höganäs, world-leading manufacturer of metal powders.
    (b) Innovation Fund (“Cheque Innovación”) by Regional Government of Madrid with the company RAMEM S.A. (Madrid).
    (c) Industrial collaboration “Bonded Magnets” with IMA S.L.U. (Barcelona).

    The Group is additionally participating in the project UWIPOM2 (with Dr. Alberto Bollero as IMDEA's P.I.) [Ref. 857654]; and in the project NanomagCOST (coordinated by Prof. Rodolfo Miranda, Universidad Autónoma de Madrid; and Dr. Alberto Bollero as IMDEA's P.I.) [Ref. S2018/NMT-4321].

    In the past, the Group has coordinated the EU Project FP7 NANOPYME (Ref. 310516) and a bilateral German-Spanish action exploring the use of rare-earth/metal multilayers in new sensing devices; and has participated in the project NanoFrontMag-CM (coordinated by Prof. Rodolfo Miranda, Universidad Autónoma de Madrid; and Dr. Alberto Bollero as IMDEA's P.I.) [Ref. S2013/MIT-2850].

  • Scope

    Magnetic materials are important in the production, transmission and use of electrical energy. It has become obvious over the years that an increased use of low carbon technologies is necessary to ensure a high living standard. Permanent magnets (PMs), used in multitude of technological applications, play a very important role in these efforts. Many nowadays applications traditionally use rare earth (RE)-based PMs, as no relevant problems in terms of availability or high and unstable pricing raised at the time of their implementation. The situation has dramatically changed in recent years due to an increased monopoly.

    This increased need of PMs in combination with the strategically geographical situation of REs make mandatory, first, an efficient and well focused use of these elements for specific purposes (high performing applications or micro-scalable devices) and, additionally, a reinforcement in the search of PMs alternatives in applications areas where the use of REs may be reduced or totally avoided.

    We work actively in collaboration with international research centers and companies in the search of improved and novel permanent magnet materials. Our research is based on three main pillars:

    • Development of basic research and its translation to industry and end-users.
    • Up-scalability of the procedures to avoid that achieved advances stop at the laboratory.
    • Sustainability through recycling and efficient use of the resources.

    gallery1

    Figure 1. Permanent magnets (PMs) in nowadays-technological applications: from energy generation, going through energy transformation and to devices. [Image: IMDEA Nanoscience]

    RE-free PMs, constituted by non-critical elements would contribute to solve the EU dependency of REs and would revert the situation of the PMs from the nowadays situation which is determined by the geographical distribution of the raw materials to a new market where the know-how and technological development will determine the market leader.

    The Group of Permanent Magnets and Applications works in close cooperation with recognized international research centres [Northeastern University Boston (USA), IFE (Norway), IPSAS (Slovakia)…] and well-established companies [Höganäs AB (Sweden), IMA S.L. (Spain)…] in the search of alternatives to RE-PMs and of more efficient and environmentally friendly synthesis and processing routes for PMs.

    Advanced 3D-printing technology is used by the Group for printing rare earth-free and hybrid Neo/ferrite PMs. Laser-assisted additive manufacturing, typically used for 3D-printing of metallic alloys, is not a feasible option for PMs due to the high temperatures achieved during processing. Thermally controlled 3D-printing makes use of PM/polymer composite filament to print magnetic elements. This approach intends to change the actual technological paradigm based on design of devices according to magnets with predefined geometries (in-catalogue), which lately limits their efficiency.

    figure2

    Figure 2. Coercivity development in nanocrystalline MnAl particles achieved by the innovative rapid-milling procedure (30-270 s) followed by reduced-temperature annealing (365ºC/10min). Published in J. Phys. D: Appl. Phys. 50, 105004 (2017).

     figure3

    Figure 3. Synthesis of metallic alloys by gas-atomization and preparation of the metallic/polymer composite by the solution casting method.

    figure3

    Figure 4. 3D-printer used for high-density materials (PMs and metallic alloys). Photograph of metallic/polymer composite (filling factor: 80 wt%) and filament. 3D printed elements (hexagonal columns) prepared from the filament.

    gra1

    Figure 5. First-time fabrication of permanent magnet filament of MnAlC (extensible to different alloys) and 3D-printed magnetic piece with complex structure. More information at Sci. Technol. Adv. Mater., 19 (1), 465-473 (2018).

    grab2

    Figure 6. Precursor materials for the synthesis of ferrites and fabricated magnets (prototypes and large) from ferrite powder with permanent magnet properties.

    figure4

    Figure 7. Recycling of ferrite residues in a manufactory plant. The quality of the recycled ferrite powder has been tested and compared to that of the new starting ferrite material. The magnetic properties of the recycled powder not only match those of the starting material acquired by the company for the production of magnets but exceed them. A coercivity value 3.5 times larger than that of the new starting ferrite powder, accompanied by a 25% increase in remanence, makes this material a new and improved ferrite product to re-enter the production chain in the factory with an extended applications range. Extended information: ACS Sustainable Chem. Eng. 5, 3243 (2017)

    figure5

     Figure 8. SEM image of Sr-ferrite sintered magnet prepared at IMA S.L. [Image: IMDEA Nanoscience]

    grab3 2

    Figure 9. Scooter with an electric ferrite-based motor designed and constructed in the frame of EU- FP7 NANOPYME.

  • Facilities

    The laboratories dedicated to permanent magnets are divided into five categories:

    • Synthesis and processing of magnetic powders and bulk magnets.

     

    Equipment1 b1

     

    High-energy ball milling devices; three small and large volume furnaces with operation under controlled atmosphere; pressing machine for compaction under magnetic field; humidity chambers for testing under extreme operation conditions.

    • 3D-Printing

    3dprinting1 3dprinting2

    Different types of extruders and 3D-printing equipment for printing of polymers and composites (PM/polymer and metal/polymer).

    • Thin films growth capabilities.

      labb35lab2

    Molecular beam epitaxy (MBE) equipped with a full range of in-situ characterization techniques (XPS, UPS and LEED); two sputtering devices.

    • Magnetic characterization.

       Equipment6Equipment5

    Vectorial vibrating sample magnetometer (v-VSM) with possibility of applying a maximum magnetic field of 3T; three vectorial-magneto-optical Kerr effect (v-MOKE) setups allowing for simultaneous recording of angular hysteresis loops and magnetoresistance curves and operating at low and high temperatures; a high resolution MOKE microscope with possibility of in-situ application of perpendicular and in-plane external magnetic field.

    Furthermore, microstructural characterization tools (dual FIB/SEM, SEM, TEM,…) are also available at the institute.

    • Electronic capabilities for design and construction of prototypes (motors, sensors…).

     Equipment7moto

     

     

  • Projects

    The quality of the research carried out by the team is proven by 14 initiatives (national and international ones) coordinated or with a P.I. role by the team during the last 5 years (2015-2020).

    The Projects coordinated by the Group are classified in two categories: scientific-technological projects and industrial projects.

    SCIENTIFIC-TECHNOLOGICAL

    1. Title: UWIPOM2 “Ultra-Efficient Wireless POwered Micro-robotic joint” (Ref. 857654)
    Coordinator: Dr. Efrén Díez (UAH). PI(IMDEA): Dr. Alberto Bollero
    Financial Entities: H2020 FET-Openl
    Duration: 01/10/2019 – 30/09/2022
    Project costs: € 2.987.000

    uwipom2

    2. Title: 3D-MAGNETOH “3D-Printing of Mn-based Magnets for a New Energy and Transport Horizon” (MAT2017-89960-R)
    P.I.s: Dr. Alberto Bollero / Dr. Ester M. Palmero
    Financial Entities: MINECO
    Duration: 01/01/2018 – 31/12/2020
    Funding: € 90.750

    3dmagneton

    3. Title: NanoMagCOST “Solutions of Nanomagnetism for Societal Challengues” (Ref. S2018/NMT-4321)
    Coordinator: Prof. Rodolfo Miranda (Universidad Autónoma de Madrid)
    IMDEA Nanociencia's PI: Dr. Alberto Bollero
    Duration: 01/01/2019 - 31/12/2022
    Funding: € 1.064.800

    nanomagCOST positivo

    4. Title: NEXMAG “New exchange-coupled Manganese-based magnetic materials” (PCIN-2015-126)
    Coordinator: Dr. Alberto Bollero
    Financial Entities: MINECO - EU M.ERA-NET Call
    Duration: 01/12/2015 – 30/11/2018
    Project costs: € 739.400. Funding: € 170.000

    nextmag

    NEXMAG designated “Success Case” by the M.ERA-NET Network.

    5. Title: NANOPERMAG “Nanociencia aplicada al desarrollo de imanes permanentes libres de tierras raras mediante tecnologías sostenibles” (Ref. EIN2019-103506)
    P.I.: Dr. Alberto Bollero
    Financial Entities: MINECO
    Duration: 01/01/2019 – 31/12/2020
    Funding: € 10.000

    6. Title: ENMA “Exchange-coupled Nanocomposite Magnets: Towards Rare Earth-Free Permanent Magnets” (MAT2014-56955-R)
    P.I.: Dr. Alberto Bollero
    Financial Entities: MINECO
    Duration: 01/01/2015 – 31/12/2017
    Funding: € 60.000

    Project ENMA logo

    7. Title: “Nueva generación de imanes basados en MnAl mediante impresión 3D para aplicaciones energéticas” (EUIN2017-88502)
    P.I.: Dr. Alberto Bollero
    Financial Entities: MINECO
    Duration: 01/02/17 – 31/12/18
    Funding: € 13.500

    8. Title: NANOFRONTMAG “New Frontiers in Fundamental and Applied Nanomagnetism” (S2013/MIT-2850)
    Coordinator: Prof. Rodolfo Miranda (Universidad Autónoma de Madrid)
    I.P. by IMDEA Nanociencia: Dr. A. Bollero
    Financial Entities: Regional Government (Comunidad de Madrid)
    Duration: 01/06/2015 – 30/05/2018
    Funding: € 894.400

    nanofront

    9. NANOPYME “Nanocrystalline Permanent Magnets Based on Hybrid Metal-Ferrites” [Ref. 310516].
    Coordinator: Dr. Alberto Bollero
    Financial Entity: FP7 E.U. [7th Framework Programme]
    Duration: 01/12/2012 – 31/11/2015
    Project costs: 4.5 M€. Funding: 3.5 M€

    nanopyme

    INDUSTRIAL

    10. Industrial collaboration with Höganäs AB (Sweden)
    Title: ECNanoManga 
    P.I.: Dr. Alberto Bollero
    Financial Entity: Höganäs AB (Sweden).
    Duration: 01/11/2018 – 30/10/2021

    11. Industrial collaboration with Höganäs AB (Sweden)
    Title: GAMMA
    P.I.: Dr. Alberto Bollero
    Financial Entity: Höganäs AB (Sweden).
    Duration: 01/04/2017 – 30/09/2018

    gamma

    12. Innovation Fund “Cheque Innovación” with RAMEM S.A. (Madrid)
    Title: “Síntesis e impresión 3D de materiales compuestos de partículas metálicas y polímeros funcionales”
    P.I.s: Dr. Alberto Bollero / Dr. Ester M. Palmero
    Financial Entity: Regional Government (Comunidad de Madrid).
    Duration: 01/01/2018 – 30/06/2018

    13. Industrial collaboration with IMA S.L. (Barcelona)
    Title: “Bonded Magnets”
    P.I.: Dr. Alberto Bollero
    Financial Entity: IMA S.L. (Barcelona).
    Duration: 01/06/2018 – 31/05/2021

     

     

  • Publications

     

    2019

    J.L.F. Cuñado, J. Camarero, F.J. Pedrosa, N.M. Nemes, M. Sanz, M. Oujja, E. Rebollar, J.F. Marco, J. de la Figuera, M. Monti, M. Castillejo, T. Feher, B. Nafradi, L. Forró and A. Bollero, Evidence of anomalous switching of the in-plane magnetic easy axis with temperature in Fe3O4 film on SrTiO3:Nb by v-MOKE and ferromagnetic resonanceNanoscale 11, 19870-19876 (2019).

    E.M. Palmero, D. Casaleiz, J. de Vicente, J. Hernández-Vicen, S. López-Vidal, E. Ramiro, and A. Bollero, Composites based on metallic particles and tuned filling factor for 3D-printing by Fused Deposition Modeling, Compos. Part A Appl. Sci. Manuf. 124, 105497 (2019).

    J. Rial, E.M. Palmero, and A. Bollero, Efficient nanostructuring of isotropic gas-atomized MnAl powder by rapid milling (30 s), DOI: 10.1016/j.eng.2019.03.013, Engineering (2019).

    M. Villanueva, C. Navío, E. Céspedes, F. Mompeán, M. García-Hernández, J. Camarero, and A. Bollero, MnBi thin films for high temperature permanent magnet applications, AIP Adv. 9, 035325 (2019).

    V. Øygarden, J. Rial, A. Bollero, and S. Deledda, Phase-pure τ-MnAlC produced by mechanical alloying and a one-step annealing route, J. Alloys Compd. 779, 776-783 (2019).

    E.M. Palmero, D. Casaleiz, N.A. Jiménez, J. Rial, J. de Vicente, A. Nieto, R. Altimira, and A. Bollero, Magnetic-polymer composites for bonding and 3D-printing of permanent magnets, IEEE Trans. Magn. 55 (2), 2101004 (2019). 

    2018

    C. Navío, M. Villanueva, E. Céspedes, F. Mompeán, M. García-Hernández, J. Camarero, and A. Bollero, Ultrathin films of L10-MnAl on GaAs (001): A hard magnetic MnAl layer onto a soft Mn-Ga-As-Al interface, APL Mater. 6, 101109 (2018).

    J. Rial, P. Švec, E.M. Palmero, J. Camarero, P. Švec Sr., and A. Bollero, Severe tuning of permanent magnet properties in gas-atomized MnAl powder by controlled nanostructuring and phase transformation, Acta Mater., 157, 42-52 (2018).

    E.M. Palmero, J. Rial, J. de Vicente, J. Camarero, B. Skårman, H. Vidarsson, P.-O. Larsson, and A. Bollero, Development of permanent magnet MnAlC/polymer composites and flexible filament for bonding and 3D-printing technologies, Sci. Technol. Adv. Mater., 19 (1), 465-473 (2018).

    2017

    A.Bollero, J. Rial, M. Villanueva, K.M. Golasinski, A. Seoane, J. Almunia, and R. Altimira, Recycling of strontium ferrite waste in a permanent magnet manufacturing plant, ACS Sustainable Chem. Eng., 5 (4), 3243-3249 (2017).

    J.Rial, M. Villanueva, E. Céspedes, N. López, J. Camarero, L.G. Marshall, L.H. Lewis, and A. Bollero, Application of a novel flash-milling procedure for coercivity development in nanocrystalline MnAl permanent magnet powders, J. Phys. D: Appl. Phys., 50 (10), 105004 (2017).

    M.N. Guzik, K.M. Golasinski, F.J. Pedrosa, P. Jenuš, A. Bollero, B.C. Hauback, and S. Deledda, Influence of ultra-short cryomilling on the microstructural and magnetic properties of cobalt ferrite, J. Alloys Compd., 721, 440-448 (2017).

    E.Céspedes, M. Villanueva, C. Navío, F.J. Mompeán, M. García-Hernández, A. Inchausti, P. Pedraz, M.R. Osorio, J. Camarero, and A. Bollero, High coercive LTP-MnBi for high temperature applications: From isolated particles to film-like structures, J. Alloys Compd., 729, 1156-1164 (2017).

    J.Y. Law, J. Rial, M. Villanueva, N. López, J. Camarero, L.G. Marshall, J.S. Blázquez, J.M. Borrego, V. Franco, A. Conde, L.H. Lewis, and A. Bollero, Study of phases evolution in high-coercive MnAl powders obtained through short milling time of gas-atomized particles, J. Alloys Compd., 712, 373-378 (2017).

    J.L.F. Cuñado, A. Bollero, T. Pérez-Castañeda, P. Perna, F. Ajejas, F.J. Pedrosa, A. Gudín, A. Maldonado, M.A. Niño, R. Guerrero, D. Cabrera, F.J. Terán, R. Miranda, and J. Camarero, Emergence of the Stoner-Wohlfarth astroid in thin films at dynamic regime, Sci. Rep., 7, 13474 (2017).

    E.Céspedes, G. Rodríguez-Rodríguez, C. Navío, M.R. Osorio, R. Guerrero, F.J. Pedrosa, F.J. Mompeán, M. García-Hernández, J.F. Fernández, A. Quesada, J. Camarero, and A. Bollero, Inter-grain effects on the magnetism of M-type strontium ferrite, J. Alloys Compd., 692, 280-287 (2017).

    2016

    F.J. Pedrosa, J. Rial, K.M. Golasinski, M.N. Guzik, A. Quesada, J.F. Fernández, S. Deledda, J. Camarero, and A. Bollero, Towards high performance CoFe2O4 isotropic nanocrystalline powder for permanent magnet applications, Appl. Phys. Lett., 109, 223105 (2016).

    N.Jackson, F.J. Pedrosa, A. Bollero, A. Mathewson, and O.Z. Olszewski, Integration of thick-film permanent magnets for MEMS applications, J. Microelectromech. Syst., 25 (4), 716-724 (2016).

    J.M. Colino, M.A. Arranz, A.J. Barbero, A. Bollero, and J. Camarero, Surface magnetization and the role of pattern defects in various types of ripple patterned films, J. Phys. D: Appl. Phys., 49 (13), 135002 (2016).

    F.J. Pedrosa, J. Rial, K.M. Golasinski, M. Rodríguez-Osorio, G. Salas, D. Granados, J. Camarero, and A. Bollero, Tunable nanocrystalline CoFe2O4 isotropic powders obtained by co-precipitation and ultrafast ball milling for permanent magnet applications, RSC Adv., 6, 87282-87287 (2016).

    A.Quesada, C. Granados-Miralles, A. López-Ortega, S. Erokhin, E. Lottini, F.J. Pedrosa, A. Bollero, A.M. Aragón, F. Rubio-Marcos, M. Stingaciu, G. Bertoni, C. de Julián Fernández, C. Sangregorio, J.F. Fernández, D. Berkov, and M. Christensen, Energy product enhancement in imperfectly exchange-coupled nanocomposite magnets, Adv. Electron. Mater., 2 (4), 1500365 (2016).

    2015

    P.Perna, F. Ajejas, D. Maccariello, J.L. Fernández-Cuñado, R. Guerrero, M.A. Niño, A. Bollero, R. Miranda, and J. Camarero, Interfacial exchange-coupling induced chiral symmetry breaking of spin-orbit effects, Phys. Rev. B, 92, 220422 (2015).

    F.J. Pedrosa, J. Rial, K.M. Golasinski, J. Camarero, and A. Bollero, CoFe2O4 isotropic powders for permanent magnet applications, IEEE EUROCON 2015.

    J.L. Cuñado, F.J. Pedrosa, F. Ajejas, A. Bollero, P. Perna, F.J. Terán, R. Miranda, and J. Camarero, Note: Vectorial-magneto optical Kerr effect technique combined with variable temperature and full angular range all in a single setup, Rev. Sci. Instrum., 86 (4), 046109 (2015).

    A.Bollero, F.J. Pedrosa, J.L. Cuñado, J. Camarero, M. Seifert, V. Neu, V. Baltz, D. Serantes, O. Chubykalo-Fesenko, R.P. del Real, M. Vázquez, L. Schultz, B. Dieny, and R. Miranda, Extraordinary exchange-bias effects in coupled SmCo5 (perpendicular)/CoFeB (in-plane) bilayers, 2015 IEEE Magnetics Conference (INTERMAG).

    2014

    P.Perna, D. Maccarielo, C. Rodrigo, J.L.F. Cuñado, M. Muñoz, J.L. Prieto, M.A. Niño, A. Bollero, J. Camarero, and R. Miranda, Direct experimental determination of the anisotropic magnetoresistive effects, Appl. Phys. Lett., 104, 202407 (2014).

    P.Sirvent, E. Berganza, A.M. Aragón, A. Bollero, A. Moure, M. García-Hernández, P. Marín, J.F. Fernández, and A. Quesada, Effective high-energy ball milling in air of Fe65Co35 alloys, J. Appl. Phys., 115, 17B505 (2014).

    E.Jiménez, N. Mikuszeit, J.L. Cuñado, P. Perna, F.J. Pedrosa, D. Maccariello, C. Rodrigo, M.A. Niño, A. Bollero, J. Camarero, and R. Miranda, Vectorial Kerr magnetometer for simultaneous and quantitative measurements of the in-plane magnetization components, Rev. Sci. Instrum., 85 (5), 053904 (2014).

     

  • News and Media Coverage

    25 Oct 2019

    Javier Rial defends his doctoral thesis entitled "Isotropic nanocrystalline MnAl(C) permanent magnet powder" and supervised by Dr. Alberto Bollero.

    a1

    02 - 03 Oct 2019

    Kick off meeting the H2020 FET-Open project UWIPOM2, which will seek to develop micro-robotic mechanisms for minimally invasive micro-surgery techniques and in-vivo health treatments. The project is coordinated by the University of Alcalá and counts with IMDEA Nanociencia as a partner, together with Advanced Hall Sensors Ltd. (UK), Politechnika Warszawska (Poland) and Boston Scientific (Ireland). UWIPOM2 Consortium counts with the participation of expert neurosurgeon Dr. Luis Ley Urzáiz and cardiologist Dr. José A. García Lledó.

    a2

    02 Sep 2019

    The industrial collaboration of the Group of Permanent Magnets and Applications from IMDEA Nanociencia with RAMEM for the development of thermally controlled 3D-printed metal/polymer components gets coverage in the media. Read about the work of Palmero et al. with applicability in the aeronautic and aerospace sectors:

    15 Jul 2019

    Dr. Ester Palmero was invited over the XXXVII Biennial Meeting of the Spanish Royal Society of Physics (RSEF) in Zaragoza to present the recent developments of the Group of Permanent Magnets and Applications on 3D-printing technologies for the fabrication of permanent magnets.

    07 Jun 2019

    Javier Rial has won the "Three Minute Thesis" prize in the Science category, in representation of Universidad Autónoma de Madrid.a3

    06 Jun 2019

    Melek Villanueva and research colleagues have won the IEEE Magnetics Society Summer School Project Award for their project "A non-collinear antiferromagnet for energy reclamation and memory applications".

    a4

    13 Feb 2019

    Alberto Bollero and Ester Palmero were talking about “Experiments in Nanoscience” at the school CPB Ángel León in Colmenar Viejo (Madrid) in the frame of the scientific activities organized for celebrating the International Day of Women and Girls in Science.a5

    06 Dic 2018

    Dr. Alberto Bollero was invited to give an IMW-Seminar at the IFW – Dresden (Germany) entitled “Strategies against rare-earth element criticality used in permanent magnets: substitution, industrial sustainability and novel technological approaches”.

    26 Sep 2018

    Dr. Alberto Bollero was invited to present the recent developments of the Group of Permanent Magnets and Applications on alternative materials to rare-earth elements at the Workshop on Rare-Earth mining and environmental impact in Castilla-La Mancha, Escuela Técnica Superior de Ingenieros Agrónomos (UCLM), Ciudad Real. The invited talk was entitled “Current research efforts to replace and recycle rare-earth elements”.

    13 Sep 2018

    The project “NEXMAG” coordinated by the Group of Permanent Magnets and Applications at IMDEA has been designated “Success Case” by the M.ERA-NET Network.

    nextmag

    01 Sep 2018

    The development of the first rare earth-free permanent magnet filaments based on MnAlC carried out by the Group of Permanent Magnets and Applications gets coverage in the September 2018 Bulletin of the Royal Spanish Society of Physics.

    28 Aug 2018

    Dr. Alberto Bollero was invited to give the talk entitled “Rapid-milling applied to isotropic rare earth-free permanent magnet powders: from ferrites to MnAl” at the REPM 2018 in Beijing (China).

    24 Jul 2018

    The work for developing the first rare earth-free MnAl-based filaments with permanent magnet properties carried out by the Group of Permanent Magnets and Applications gets coverage in national and international media:

    “First rare earth-free MnAlC permanent magnet filaments”, AZoM

    “Fabricado el primer filamento de imán permanente libre de tierras raras”, La Vanguardia

    “Se fabrica el primer filamento de imán permanente libre de tierras raras basado en MnAl”, madri+d

    “First rare earth-free MnAlC permanent magnet filaments for 3D printing”, Nanowerk

    a6

    03 Jul 2018

    Dr. Alberto Bollero and Dr. Ester Palmero were invited to give a lecture on “Permanent Magnets” at the IV Curso del Club Español de Magnetismo “Summer Workshop, Challenges of Basic and Applied Magnetism” (Miraflores de la Sierra, Madrid).

    20 Jun 2018

    Dr. Ester Palmero was invited to give a talk entitled “Polymerization of rare earth-free permanent magnet particles for advanced 3D printing technology” at the E-MRS Spring Meeting 2018, Strasburg (France).

    08 May 2018

    "Desarrollo sostenible de nuevos imanes permanentes "Made in Europe" con un reducido impacto medioambiental", madrid+d

    24 Apr 2018

    Dr. Cristina Navío was invited to give a talk entitled “Ferromagnetic manganese based ultra-thin films: structural, spectroscopic and magnetic characterization” at the Department of Applied Physics of the University of Castilla la Mancha, Ciudad Real.

    04 Dic 2017

    Researchers of the Group of Permanent Magnets visit the factory of Höganäs in Sweden in the frame of the industrial project GAMMA.

    group2

    05 Jul 2017

    The activities of the Group of Permanent Magnets and Applications for the development of alternative permanent magnets to the ones based on rare-earths get coverage in the national media RTVE (from minute 7:20).

    28 Jun 2017

    "IMDEA Nanociencia proyecta los imanes ecológicos del futuro", InnovaSpain

    27 Jun 2017

    "Preparando en Europa la próxima generación de imanes permanentes: sentido común, sostenibilidad, innovación y cooperación, ingredientes fundamentales", madrid+d

    17 May 2017

    "IMDEA Nanociencia y la empresa Höganäs se alían para crear los imanes del futuro", madrid+d